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Introduction

Models and the practice of modelling have been the subject of ongoing debate in 
geography. Modelling ‘has arguably become the most widespread and infl uential 
research practice in the discipline of geography, as indeed within the sciences more 
generally’ (Demeritt and Wainwright, 2005, p. 206). The geographical literature is 
replete with reviews of various approaches to modelling and debates as to the merits, 
or otherwise, of modelling itself (e.g., see Macmillan, 1989b; Canham et al., 2003; 
Wainwright and Mulligan, 2004). In this chapter, I aim to provide a picture of the 
‘state-of-the-art’ in the modelling of human-environment interactions, with a focus 
on simulation models and their evaluation. The focus is on the place of models and 
the nature of modelling as intellectual activities, rather than on the mechanics of 
model-building. The chapter is divided into two broad sections; the fi rst focuses on 
current perspectives on modelling in geography and the second uses a series of case 
studies to illustrate how modelling is being practised.

Fundamental concerns for effective model-building and analysis are: (i) ensuring 
that the entity under investigation is appropriately represented and (ii) obtaining 
the data required to parameterise the models. These two issues relate to some of 
the crucial decisions of model-making: how detailed should a model be? How much 
causal (process) representation does it need to incorporate? At what scales in time 
and space should it operate? The problem of determining optimal model complexity, 
in terms of representational and empirical adequacy, is a recurrent theme of this 
chapter. A second underlying theme is that of complexity and complexity science 
(Medd, 2001; O’Sullivan, 2004). Over the last decade interest in and insights from 
‘complexity’ and ‘complexity science’ have led to signifi cant shifts in modelling 
socio-environmental systems. It is important to distinguish between complicated and 
complex systems. In complicated systems many components interact in a linear, or 
somehow predictable, manner (e.g., a multi-component, yet inherently predictable, 
system such as an aeroplane), whereas complex systems may comprise but few 
components, but (indirect) interactions between those components result in unex-
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pected behaviours at the system-level (so-called ‘emergence’). The central lesson of 
complexity science is that the dynamics of seemingly complex/complicated entities 
can be reproduced by simple models. In other words, complex problems do not 
necessarily require complicated answers1. That computer-based simulations are the 
main tool of complexity science has led to an examination of the place of simulation 
in science more generally and in particular to the question of ‘where do simulation 
models lie in relation to theories and to experiments?’ (see Humphreys, 1995/96; 
Dowling, 1999).

Approaches and Issues

What, why and how?

Models are idealised simplifi cations of some phenomenon or system. If modelling 
is nothing more than a process of simplifi ed representation then nearly all concep-
tual activities might be described as modelling and verbal descriptions and carto-
graphic maps could be called models. In this context, simplifi cation entails paring 
back the representation of an entity until it contains only what is relevant to a given 
problem (a process often termed ‘abstraction’) as well as deliberate distortion to aid 
understanding (e.g., economists may assume perfectly rational decision making). As 
a result, models are inherently false and are known to be so. Thus, as the basic 
empiricist argument against scientifi c realism emphasises, considering a model to be 
‘true’ is perilous (Morton, 1993; Oreskes et al., 1994; Beven, 2002). Nevertheless, 
and crucially, as Beven (2002) and Frigg and Hartmann (2006) point out, models 
may still be approximately true.

Given that all models are simplifi cations, one of their key traits is their level or 
degree of detail. This is usually thought of in terms of the number of parameters a 
model contains or processes it represents. As Batty and Torrens (2001) and Mulligan 
and Wainwright (2004) emphasise, parsimony is central to good modelling: we seek 
the simplest model that serves our purpose adequately. This does not mean that the 
absolutely simplest model is always the best solution; rather, we seek the simplest 
model that also serves the purpose we require of it. It is worth noting, however, 
that although modellers have tended to adopt this ‘parsimony principle’, observa-
tions of the ‘real’ world suggest that it is not simple, nor do simple answers seem 
consistently more useful than complicated ones. In practice, most (environmental) 
modellers tend to adopt what Beven (2002) terms ‘pragmatic realism’, that is they: 
(i) attempt to make their models as realistic as possible, and (ii) consider that even 
if current models are limited they will, over time, become ever more faithful mimics 
of the entity being represented.

Types of models

Methodologically, models are often classifi ed as being conceptual, analytical (math-
ematical), empirical-statistical or simulation in form (table 20.1). Conceptual models 
are simply verbal, narrative or graphical descriptions of the system of interest, and 
the interactions and interdependencies between its components, while analytical 
(mathematical) models are distillations of conceptual models into the formalisms of 
mathematics. Empirical-statistical and simulation models are often distinguished by 
how they treat causality. Empirical-statistical models (e.g., regression approaches) 
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are based on observations and focus on prediction of a system’s dynamics; they do 
not consider why a change will occur, only what the nature of the change will be. 
Conversely, simulation models tend to consider the dynamics of the system and the 
processes that explain those dynamics; they consider what the response of the system 
might be to change and what processes explain that response. Thus, simulation 
models are often also referred to as ‘mechanistic’ or ‘process-based’ (Guisan and 
Zimmermann, 2000). In many cases the boundaries between the methodologies are 
blurred; for example, nearly all simulation models contain mathematical elements 
and some empirical component.

Another view is to consider models as being either ‘top-down’ or ‘bottom-up’ 
(Grimm, 1999). Bottom-up modelling is an atomistic approach, motivated by the 
belief that the dynamics and organisation of complex systems arise from, and can 
be explained by, interactions between the units that comprise that system. In 
environmental geography, agent-based models (ABMs) epitomise bottom-up model-
ling (Parker et al., 2003; Brown et al., 2004; Brown, 2006). In ABMs, the agents 
are autonomous, goal-seeking entities. Although agents often represent individuals, 
they may also represent aggregate structures such as family units, tribes, settlements 
or business organisations. Schelling’s (1978) segregation model provides a famous 
example of a bottom-up, agent-based approach. In Schelling’s model, householders 
are divided into two groups and have preferences regarding how many of each type 
of neighbour they prefer to live next to. ‘Unhappy’ households move to new sites 
in an effort to improve their situation. Over time the model produces broad-scale 

Table 20.1 A typology of modelling approaches

Model type Description

Conceptual Description of some system or process using narrative or 
graphical tools.

Analytical (mathematical) Formal description of some system or process using the 
language of mathematics; can take many different forms 
including both deterministic and stochastic approaches. 
Note, however, that the term ‘mathematical’ is somewhat 
misleading as models almost invariably contain, to a 
greater or lesser degree, mathematical elements in some 
guise (Guisan and Zimmermann, 2000).

Empirical (statistical) Models based on observed data (usually, but not necessarily, 
quantitative); includes statistical models.

Simulation In a loose sense simulation simply involves ‘building a 
likeness’ (Kleindorfer et al., 1998). In general, however, it 
is usually taken to mean computer-based or in silico (see 
page 341) activity. Simulation modelling encompasses a 
multitude of activities ranging from the numerical solution 
of analytically intractable systems of equations to attempts 
to produce faithful in silico mimics or surrogates of specifi c 
‘real’ world systems and processes (Winsberg, 2003; 
Küppers and Lenhard, 2005).

Note: Falling outside this typology are ‘hardware’ models, that is, scaled physical reconstructions 
such as fl umes and wind tunnels.



 MODELLING AND SIMULATION 339

patterns of segregation, arising purely from decisions made by individual house-
holders; macro-level patterns (segregation) ‘emerge’ from micro-level (individual) 
decisions.

By contrast, top-down modelling focuses on aggregate entities (e.g., entire popu-
lations) and on representing system-level relationships between aggregate variables 
with the goal of fi nding relationships between those variables. As such, it involves 
the application of general frameworks to particular problems (Grimm, 1999). The 
classical models of population dynamics, such as the exponential (dN/dt = rN) and 
logistic (dN/dt = rN[1 − N/K]) models, represent top-down approaches. These 
models assume that while all populations behave in the same general way, as is 
encoded in the functional form of the equation, the specifi c nature of their behaviour 
will vary from case to case, and this is specifi ed by the exact parameter values 
used.

A fi nal way to classify models is according to their use. Models serve three broad 
purposes in environmental geography: (i) predicting the future state of some system 
or phenomenon, (ii) making inferences about how a system or phenomenon is 
structured and changes, and (iii) integrating and synthesising knowledge and data 
from disparate sources. Bankes (1993) identifi es two basic purposes of modelling:

1. consolidation: modelling based on compiling all available information about a 
system with the goal of creating a realistic and faithful surrogate of it. In this 
context prediction will be important, whether to test the realism of the model 
or to inform management and policy decisions about the actual system being 
modelled; and

2. exploration: modelling in the face of epistemic uncertainty, where the model is 
used experimentally to reduce this uncertainty by investigating the consequences 
of various assumptions about the modelled object. The goal of such modelling 
is heuristic.

This classifi cation does not represent a rigid either-or division. Exploration and 
consolidation are synergistic. Improving our understanding of a process or system 
should enable us to predict its behaviour better (or determine whether it has the 
quality of predictability). Likewise, reliable prediction may lead to better under-
standing (Brown et al., 2006).

Consolidation: models for prediction

The desire to predict a system’s or phenomenon’s behaviour is a common motiva-
tion for modelling. Making predictions and testing them is central to the ‘conven-
tional’ deductive-nomological model of scientifi c inquiry. Predictive models take 
many forms, from simple deterministic analytical models to complicated stochastic 
simulation models. In geography, predictive modelling is often equated with empiri-
cal-statistical models (e.g., regression models); indeed statistical modelling is prob-
ably the most commonly applied and most criticised form of modelling used by 
geographers (Macmillan, 1989a). As outlined above, empirical-statistical models are 
formalised descriptions based on observed characteristics of the entity of concern. 
While they may describe the links between components in a system, they do not 
consider the underlying mechanisms. This approach has often been denounced for 
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yielding acausal and astructural ‘black-boxes’ that provide little heuristic insight 
(e.g., see Sayer, 1992).

Although empirical models are usually seen as focused strongly, if not solely, on 
prediction, they can also be used in an explanatory sense. The general intent of most 
empirical modelling is establishing a relationship between some variable x and a 
suite of predictor variables; establishing this relationship allows indirect causal 
relationships to be established (Mac Nally, 2000). Furthermore, there is increasing 
interest in applying statistical frameworks and tools, such as information-theoretic 
model selection and Bayesian statistics, to bridge the gap between exploration and 
prediction (Hobbs and Hilborn, 2006). In any case, the users of a prediction may 
be concerned solely with the reliability of the prediction. In such cases, a black-box 
approach may even be more appropriate than a complicated process-based model 
that explains the underlying processes responsible for driving the system being pre-
dicted (Demeritt and Wainwright, 2005). Furthermore, such models may also be 
suggestive of mechanism and help to generate new hypotheses.

Irrespective of how predictive modelling is best conducted there is, undoubtedly, 
a pressing need for reliable prediction to inform (environmental) public policy and 
decision making (Sarewitz et al., 1999; Clark et al., 2001; Pielke, Jr., 2003). Nev-
ertheless, the goal of accurate prediction has, itself, been questioned. Clark et al. 
(2001, p. 657) take the pragmatic stance that ‘ “Forecastable” ecosystem attributes 
are ones for which uncertainty can be reduced to the point where a forecast reports 
a useful amount of information’. However, Oreskes (2003) comments that the very 
factors that often lead us to modelling (limited understanding of/empirical informa-
tion about a complex and/or complicated system) restrict the use of models for 
quantitative prediction. She argues that successful prediction in science has been 
limited to short duration, repetitive systems of low dimensionality, and that, even 
in such cases, successful prediction has often been reliant on trial and error. Con-
versely, socio-ecological systems may play themselves out over long durations, be 
non-repetitive, exhibit emergent or path-dependent behaviours, and be of high 
dimensionality – all traits that seem to preclude prediction (Batty and Torrens, 
2001).

Unpredictability is also the key lesson of chaos theory. In chaotic (non-linearly 
deterministic) systems infi nitesimally small differences in initial conditions will, in 
the long-term, result in completely different dynamics and system-states. These dif-
ferences in initial conditions are much smaller than could ever be measured, and 
so, in a practical sense, chaotic systems do not even possess the quality of predict-
ability (Gleick, 1987). Concerns over the ability to make reliable or meaningful 
predictions have, for example, been at the centre of the debate over the siting of 
the US high-level nuclear waste repository at Yucca Mountain, Nevada. ‘Science’, 
including, but not limited to, modelling, has played a central role in attempting to 
assess the performance of Yucca Mountain as a waste disposal site and billions of 
dollars (US) have been spent on this process (Ewing and Macfarlane, 2002). With 
a regulatory framework demanding safety assessments spanning tens of thousands 
of years (!), ‘geoscientists in this project are challenged to make unprecedented 
predictions  .  .  .  ’ in a context where epistemic uncertainty is high and the policy 
implications of those predictions even higher (Long and Ewing, 2004, p. 364). In 
such situations, where science and politics are intertwined and interdependent, there 
are important issues at stake about how the predictions scientists make are best 
interpreted and used (Macfarlane, 2003).
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Exploration: models for learning

Besides prediction, models are vehicles for learning about the ‘real’ world. This is 
particularly true of simulation models. Recently, simulation models have become 
seen as systems that are open to examination in similar ways to other ‘traditional’ 
experimental systems (e.g., see Humphreys, 1995/96; Dowling, 1999; Winsberg, 
2001; 2003; Peck, 2004). Certainly, the application of simulation modelling in some 
disciplines falls between traditional theorising and experimentation (Humphreys, 
1995/96; Dowling, 1999). This approach opens up the possibility that following 
Dowling (1999), simulation models provide a means of ‘experimenting on theories’. 
‘Experimental’ simulation modelling seeks to mimic systems in silico2. The in silico 
form has the advantage that it can be manipulated in ways the ‘real’ world cannot; 
global climate change models are obvious examples of this (Frigg and Hartmann, 
2006). Using models in this manner is a two-step process: we learn about the model 
and then transfer knowledge about the model to the target system. In practice, 
however, analysis often concentrates predominantly on the model. Nevertheless, it 
must be remembered that the model is a tool designed to help understand the real 
world; the (often understated) diffi culty with detailed models is maintaining that 
connection (O’Sullivan, 2004; Frigg and Hartmann, 2006).

Models for integration: adaptive and participatory approaches

Models have become important tools for aiding in the decision-making process (e.g., 
forecasts of air quality are used to inform decisions about public health). Such 
modelling has often been viewed as the domain of the ‘expert’ and has been isolated 
from the rest of the decision-making process. Recently, this has begun to change as 
models are seen as integrative tools. Adaptive environmental management and 
assessment (AEMA) is an iterative process of structured learning through modelling, 
fi eld experimentation and system monitoring (Walters, 1986). AEMA uses models 
to aid in the synthesis and integration of data and understanding, and to identify 
and reduce uncertainty. For example, Walters et al. (2000) used a series of concep-
tual and simulation models to fi lter various alternatives for restoring the fl ow regime 
affected by the Glen Canyon Dam in the Grand Canyon. Their models considered 
multiple spatio-temporal scales from localised algal responses to long-term patterns 
of sedimentation. They were used to: (i) highlight key areas of uncertainty in 
the system, and (ii) identify components of the system potentially amenable to 
controlled fi eld experimentation. Model outcomes demonstrated the potential 
inability of the current monitoring framework to detect ecosystem responses to 
either experiment or management. Thus, models form(ed) part of an iterative and 
adaptive process, in which knowledge and understanding are constantly refi ned and 
management practices adapted to refl ect this.

Models are also used to facilitate communication both between researchers in 
different disciplines and between the various stakeholders involved in environmental 
decision making. Castella et al. (2005) provide an interesting example of this 
approach. Castella et al. used a range of tools including a narrative model, an ABM, 
a role-playing game (derived from the ABM) and a GIS in an attempt to understand 
human-environment interactions and LUCC following Vietnam’s doi mois eco-
nomic reforms of the 1980s. The ABM explicitly considered: (i) farmers’ decision-
making strategies, (ii) the institutions that control resource use and access, and (iii) 
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the dynamics of the biophysical and socio-economic components of the system. 
LUCC scenarios were developed with local land users using the role-playing game 
and the model, and were refi ned by repeated interactions between the researchers 
and the land users. The role-playing game helped the researchers to improve their 
understanding of farmers’ decision making and how the actors deal with the risks 
engendered by uncertainty; it built trust and facilitated communication, and hence, 
model development.

Evaluating models: confrontation and experimentation

Verifi cation and validation of models are much contested issues. Verifi cation focuses 
on assessment of a model’s structure (i.e., is the model free of logical, mathematical 
or coding errors?), whereas validation addresses on how exactly a model reproduces 
observed system dynamics (i.e., a model’s predictions are confronted with observa-
tional data to assess its empirical adequacy). While some researchers believe that 
validation is central to modelling, others have argued that it is a logical impossibility 
(see Rykiel, 1996). Both verifi cation and validation are, in essence, concerned with 
evaluating a model’s adequacy against some criteria; what is ‘adequate’ will vary 
with a model’s purpose. I will use the term ‘evaluation’ to encompass this broad(er) 
range of processes.

Models and their outcomes can be evaluated in many ways (table 20.2; Gardner 
and Urban (2003)). Kleindorfer et al. (1998) distinguishes objectivist, or founda-

Table 20.2 Some common methods of model evaluation and analysis, and their purpose

Method Description and purpose

Structural – Error propagation: Analysis of error in model output(s) as a function 
of the uncertainty associated with each parameter input to the model.

– Sensitivity analysis: Identifi cation of components of a model most 
sensitive to uncertainty and error in parameterisation.

Confrontational – Visual ‘diagnostics’: Visual comparison of empirical observations and 
model predictions (i.e. by graphs).

– Visual inspection for systematic bias, etc.
– Statistical methods: Summary of differences between observations and 

predictions.
– Quantitative comparison of predictions and observations (via 

correlation, regression and residual analysis, t-tests, difference 
measures, etc.).

– Assessment of spatio-temporal trends in model performance and 
error.

Experimental – Pattern-oriented modelling: Use of multiple observed patterns to 
evaluate and refi ne models and select between alternate 
representations (this will include structural and confi rmatory 
evaluation).

– ‘Social’ validation: Accepting a model as legitimate on the basis of 
consensus that it is valid by its users (this may or may not include 
structural and confi rmatory evaluation).

Note: These methods are not mutually exclusive and most models are evaluated using a combina-
tion of the three.
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tionalist, approaches to model evaluation from relativist and anti-foundationalist 
approaches. ‘Classical’ objectivist approaches to model analysis hinge on the ‘con-
frontation’ of a model with data, with the aim of establishing resemblance between 
the model’s predictions and observations of the ‘real’ world; they emphasise the 
empirical verifi cation of models and their outcomes. The tools used for establishing 
resemblance include graphical and visual diagnostics (e.g., time-series, residuals 
plots) and statistical (e.g., correlation and regression analyses, t-tests, summary dif-
ference measures) analyses (Mayer and Butler, 1993). Confrontational evaluation 
tends to emphasise an ‘either-or’ perspective: either the model and the predictions 
it generates are unambiguously valid, or they are rejected as unambiguously inde-
fensible, with little in-between (Oreskes et al., 1994; Kleindorfer et al., 1998).

Contemporary philosophy of science emphasises several problems with the 
objectivist view that there is any unambiguous and impartial foundation for evaluat-
ing models and theories through some kind of self-evident and unproblematic con-
frontation with empirical data (Kleindorfer et al., 1998). First, recent discussions 
of model evaluation focus on the problems in seeing a model as ‘true’ (Rykiel, 1996; 
Oreskes, 1998; Brown et al., 2006). But second, even those embracing the idea of 
falsifi cation as an alternative to the idea of validation must confront the problem 
of underdetermination. Observational data, it is argued, do not provide unambigu-
ous grounds for evaluating theories as infi nitely many hypotheses might explain a 
given dataset, even if only a small subset of these are actually plausible. This means 
that just because a model’s predictions match empirical observations to some accept-
able level, a model cannot be deemed either ‘true’ or ‘correct’. A subset of the 
underdetermination problem is equifi nality where there may be ‘multiple model 
representations that provide acceptable simulations for any environmental system’ 
(Beven, 2002, p. 2417). Finally, even the observed data used in the validation 
process carry assumptions, and so their place as a unique or truthful description of 
a system or phenomenon is itself questionable (Oreskes et al., 1994; Kleindorfer 
et al., 1998).

Even if their truth cannot be demonstrated incontrovertibly, models do have 
utility for elucidating how a system ‘works’ and for isolating where epistemic uncer-
tainty is highest. Thus, and in keeping with a more exploratory approach to model-
ling, alternative modes of model evaluation have been developed, which tend to 
focus on what has been learned rather than on assessing the degree to which obser-
vations match model predictions. The adoption of more experimental approaches 
towards simulation modelling is premised on the belief that if models are experi-
ments they should be evaluated as such (Dowling, 1999; Peck, 2004). One such 
approach is pattern-oriented modelling (POM – Wiegand et al., 2003; Grimm et 
al., 2005). POM involves the use of multiple observed spatio-temporal patterns with 
the aim of optimising model structure (by identifying components of the model 
central to aspects of observed behaviour), reducing parameter uncertainty, and 
testing and exploring alternate model representations (Grimm et al., 2005). Another 
more experimental approach is what Castella et al. (2005) call ‘social validation’ in 
which a model’s users collectively agree that a model is a legitimate representation 
of the system (cf. Küppers and Lenhard, 2005); again, this is very different from 
the traditional emphasis on resemblance between observations and predictions. 
Castella et al. argue that social validation is crucial in participatory modelling, 
stating (p. 27) ‘a model can only be used as a mediating tool for concerted action 
once it has been perfectly understood and is considered by decision makers to be 
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legitimate’; this echoes Kleindorfer et al. (1998) who argue that model validation 
should be an open process involving model builder(s) and other stakeholders. Evalu-
ating models in this way represents a signifi cant departure from the objectivist 
methods typically used in the natural sciences. Development of alternative ways to 
evaluate models of all types remains fertile, if contested, ground.

Case Studies: Land-Use and Cover Change (LUCC)

Modelling LUCC is of active interest across geography and many other disciplines3. 
To illustrate the points raised in previous sections, I will consider some of the 
approaches taken to modelling LUCC. I do not intended to provide an exhaustive 
overview of activity in the fi eld, but rather to provide an overview of the types of 
approaches that have been adopted. I will consider models in terms of the typology 
introduced in table 20.1, with the caveat that models typically span multiple of 
these categories; for example, simulation models usually contain analytical and 
empirical-statistical components. Finally, although LUCC is an obvious example of 
socio-ecological modelling, there are many other areas of environmental geography 
where models are routinely applied, including urban planning, climate change and 
its implications, resource models of water use and agricultural production, transport 
planning, reconstruction of palæo-environments, and prediction of the distribution 
of species and ecological communities (past, present and future), among other 
applications. The chapters in Wainwright and Mulligan (2004) provide a number 
of examples of specifi c modelling applications across the broad fi eld of environ-
mental geography.

Analytical models

Analytical models of LUCC focus on changes in the abundance of different land 
uses or conditions (e.g., economic values). These ‘distributional models’ (sensu 
Baker, 1989) are non-spatial and focus on how much change is taking place rather 
than where change is occurring. Transition (Markov) matrices are a commonly used 
type of distributional model. In Markov models, locations in the landscape are clas-
sifi ed as being in one of n discrete categories. Repeatedly multiplying a n × n matrix, 
which describes the probability of transitions between each category, by a vector, 
which contains the abundance of each category in the landscape, results in a projec-
tion of change in the abundance of the various categories present in the landscape 
into the future under various restrictive assumptions. This approach has often been 
used in modelling LUCC (e.g., Turner, 1987; Hall et al., 1991; Romero-Calcerrada 
and Perry, 2004) because it is intuitive, conceptually simple and relatively easily 
parameterised (e.g., via time-series of remotely sensed imagery). However, in their 
simplest form, Markov models assume stationarity (constant rates of change in 
space and time) and ignore spatial neighbourhood effects.

A discipline where analytical modelling of land-use change has been much applied 
is economics. I will consider this economic framework here as much contemporary 
simulation modelling of LUCC (especially the agent-based approach) has been 
developed as a reaction to the microeconomic approach and its assumptions. The 
standard economic approach to land-use change is the ‘bid-rent model’ in which 
parcels of land (characterised by their location and other attributes) are allocated 
to the use earning the highest rent. This framework, based on rational utility theory, 
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was originally developed by von Thünen for urban areas where property owners 
seek to optimise their location by trading off access to the urban centre with land 
rents. The model is equilibrial and spatially homogeneous, and (perhaps unsurpris-
ingly) fails to reproduce observed patterns of city growth adequately; instead it 
produces concentric rings refl ecting the balance between land value and transporta-
tion costs (Bockstael, 1996; Irwin and Geoghegan, 2001; Brown, 2006).

A few recent microeconomic models have departed from some of these restric-
tive assumptions and have adopted a spatially explicit perspective. For example, 
Bockstael (1996) and Irwin and Geoghegan (2001) describe a spatially explicit 
model of the economics of land-use conversion in the Patuxent watershed in north-
east Maryland, USA. This region is a heterogeneous mix of rural and urban land 
uses and is undergoing rapid urbanisation, precisely the type of situation that con-
founds non-spatial bid-rent models. In Bockstael’s model, land owners make deci-
sions about whether or not to change land use at a given site on the basis of the 
future stream of returns to the parcel given how it is currently used (taking into 
account conversion costs). Because knowledge surrounding these decisions is imper-
fect, this decision-making process is framed as discrete probability choices. If there 
are n categories of land use, then there are n2 decisions that land owners could 
potentially make. Bockstael (1996) reduces this to just one choice: whether or not 
to convert a land parcel from being undeveloped to developed. Thus, the model 
requires two pieces of empirical information: (i) the value of each parcel of land 
under any possible uses and (ii) the probability of conversion given those land values 
and associated conversion costs. To estimate these, Bockstael used an empirical 
model of land values (what economists term a ‘hedonic pricing model’) in which 
spatial factors such as neighbourhood conditions were included as drivers of land 
value, alongside more usual economic determinants of land value such as parcel size 
and access to transport infrastructure. The outcome of this model is a static map 
of probabilities of change. Using this framework, the implications of different public 
policy scenarios can be explored, as they infl uence the hedonic model, and the 
resultant probability maps compared. Subsequent extensions to the model (see Irwin 
and Geoghegan, 2001) made it temporally dynamic by incorporating a term that 
describes the optimal timing of the decision to convert land.

Although analytical approaches grounded in microeconomic theory have proven 
useful, they represent a different direction to that taken by geography and other 
disciplines (Drechsler et al., 2007). One of the key criticisms of such microeconomic 
models is the assumption that those involved in represent Homo economicus – the 
perfectly rational and informed decision maker. Furthermore, the emphasis in 
econometrics has largely been on temporal change and on equilibrial conditions 
(although spatial econometric tools are being developed – Irwin and Geoghegan, 
2001). Again, these research directions are somewhat different to those taken in 
geography where the emphasis on space and disequilibrial conditions makes the use 
of analytical models problematic.

Empirical-statistical models

Empirical-statistical models, and in particular, a multitude of regression-derived 
approaches, have been widely applied for modelling LUCC. These regression 
approaches have been criticised on heuristic and methodological grounds; Brown 
et al. (2004, p. 401) identify some general problems with empirical-statistical 
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models. First, statistical models of LUCC often assume that rates of change are 
stationary either in space or time or in both. Second, there are scale-related issues 
arising from the ecological fallacy and the modifi able area unit problem. Finally, 
the way in which change is represented is restricted by the limited way that relation-
ships between predictor and dependent variables can be represented mathematically. 
In essence, the question to ask is ‘how much can an empirical-statistical model illu-
minate process and causality?’

Millington et al. (2007) used empirical-statistical models in an effort to both 
understand and predict LUCC in the SPA 56 (central Spain). The SPA 56 is a 
heterogeneous and dynamic landscape comprising a range of land uses including 
agriculture, urban, peri-urban, recreation and forestry; it is designated a special 
protection area under the EU’s ‘Bird Directive’ (Natura-2000 scheme). As in much 
of Mediterranean Europe this area has seen considerable land abandonment since 
the 1960s, largely driven by the decline of the traditional rural economy and rural-
to-urban migration. Using satellite imagery, categorical maps and census informa-
tion, Millington et al. (2007) derived statistical models of LUCC in the SPA 56. 
They employed multinomial logistic regression models, whose predictions were 
evaluated on the basis of pixel-by-pixel comparisons and by comparing the accuracy 
of the statistical models with a null model of zero change in the landscape (fi gure 
20.1). The multinomial models suggested that the transformation of agricultural 
land to scrubland will continue into the future. Millington et al.’s predictive models 

Figure 20.1 An example of confrontational-type model evaluation. Multinomial 
regression models containing different predictor sets (a full ‘saturated’ model, a model 
using only biophysical predictors and a model using only socio-economic predictors) 
were used to predict landscapes in the SPA-56, Central Spain. The predictions (for 
1991) are compared with observed data (from 1991) on the basis of overall composi-
tion (Ao) and pixel-by-pixel (Ap) accuracy (proportional); analyses conducted by James 
Millington.
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only perform better than the null model of no change over longer time periods, 
where they predicted approximately 70 percent of the landscape correctly on a 
pixel-by-pixel basis. Although they suggest how the landscape might change in the 
future should the status quo be maintained, these models epitomise the predictive 
‘black-box’ approach frequently critiqued by geographers and others (e.g., Sayer, 
1992; Mac Nally, 2000). Nevertheless, statistical tools are being developed that 
help explore relationships between a suite of predictor variables and the observed 
data. For example, hierarchical partitioning (used by Millington et al., 2007) esti-
mates the contribution of each predictor to the total variance both in isolation and 
in conjunction with all other variables. Using such methods shifts the emphasis 
from producing the ‘best’ predictive model to isolating the variance explained by 
each predictor (Mac Nally, 2000). Such approaches are far better suited to hypoth-
esis formulation than is the (often blind) search for the single ‘best’ predictive 
model.

Simulation models

Simulation models are used for prediction (e.g., forecasting of response to change 
using ‘what if  .  .  .  ?’ scenarios), synthesis and integration of data, and heuristic 
insight. They range in representational detail from very simple cellular-automata 
models to detailed agent-based representations of the decision-making process in 
spatio-temporally dynamic landscapes. There is a tension in simulation modelling 
of LUCC between models emphasising the ecological heterogeneity of the landscape 
at the expense of representing the actors engaged in decision making and vice-versa. 
This divide between landscape and actor has perhaps arisen due to the different foci 
of the various disciplines modelling LUCC (Veldkamp et al., 2001). In the social 
sciences the emphasis is on understanding the micro-level motivations of decision 
makers, whereas in ecology it is more on aggregate macro-level patterns of land use 
and habitat, with the hope that the socio-economic drivers of change are subsumed 
within the transition rules or probabilities. However, as Bockstael (1996) points 
out this means that the nature of these drivers is not transparent; public versus 
private and exogenous versus endogenous effects, for example, cannot easily be 
disentangled.

The two most widely adopted types of simulation model are grid-based and 
agent-based. Grid-based models (sometimes also called cellular or raster models) 
have been much used for spatial modelling of LUCC, especially, but not exclusively, 
by ecologists. In such models, the landscape is typically conceived of as a 2D m × 
n lattice, whose cells are internally homogeneous, with their state described by either 
a categorical (e.g., habitat type) or continuous (e.g., land value) variable. The cell 
size used will vary depending on the problem being addressed and may range from 
sub-meter (e.g., individual plants) to km+ (e.g., broadscale landscape pattern). 
Representations of change in grid-based models take a variety of forms including 
transition matrix approaches, simple quantitative neighbourhood rules, or more 
complicated hybrid semi-qualitative approaches (Perry and Enright, 2006).

Jenerette and Wu (2001) used a grid-based model to explore patterns of urban 
LUCC near Phoenix, Arizona. They employed a spatially explicit Markov approach 
in which transitions were a function of neighbourhood conditions. They developed 
models at two spatial grains: 250 × 250 m (coarse) and 75 × 75 m (fi ne). Jenerette 
and Wu used a parameterisation based on observed transitions and another one 
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selected to optimise the models’ fi t to the observed data using genetic algorithms. 
Thus, Jenerette and Wu’s predictions of urban change in the region combine statisti-
cal extrapolation with simulation modelling. Jenerette and Wu (2001) deemed the 
performance of the coarse-scale model over the period 1975–95 to be satisfactory. 
However, the fi ne-scale model did not perform as well, which Jenerette and Wu 
attributed to a mismatch in the scales at play in the system and in the model. 
Jenerette and Wu (2001) also experienced problems with the models’ temporal 
(re)scaling. Estimation of the transitions between different land uses was based on 
observed data separated by a 20-year interval. These data had to be downscaled 
to annual transitions, but this downscaling failed when urbanisation was ‘non-
accretive’ (i.e., occurred in entirely new parts of the landscape).

Agent-based models (ABMs) explicitly simulate interactions between autono-
mous goal-seeking entities, especially, in the case of LUCC, in some sort of dynamic 
landscape. Over the last decade ABMs have received increasing attention as tools 
for exploring human-environmental interactions and change (e.g., see Parker et al., 
2003). One reason that they have been so eagerly adopted is dissatisfaction with 
the analytical rational-choice models traditionally used by economists. It has even 
been argued that bottom-up modelling (of which ABMs are a conspicuous compo-
nent) represents a new ‘generative’ approach to social (Epstein, 1999) and landscape 
sciences (Brown et al., 2006).

An interesting use of ABMs of LUCC, in its broadest sense, is the reconstruction 
of human-environment interactions. One of the best known of such applications is 
the ‘Artifi cal Anasazi’ model. The Anasazi were a Puebloan (meso-American) group 
who occupied parts of the south-west of the USA. The Anasazi developed a rich 
culture in and around Long House Valley (NE Arizona) from about 1800 BC. before 
a rapid collapse triggered abandonment of these sites c.1300 AD. Detailed recon-
structions of palæoecological and palæoclimatic conditions, based on dendrochro-
nology and analysis of Packrat middens, have enabled estimates of annual maize 
production and hydrological dynamics, which have been used to parameterise the 
model. ABMs of this social system have been developed covering the period 300–
1300 AD; in these models, the individual households are the agents (Dean et al., 
2000; Axtell et al., 2002; Gumerman et al., 2003). The ‘Artifi cal Anasazi’ ABM 
follows the fate of individual families in the valley with households fi ssioning (as 
female agents age and marry) and moving in the landscape in response to water 
availability and food production. Early versions of the ‘Artifi cial Anasazi’ model 
(Dean et al., 2000) included few differences between individual actors and limited 
heterogeneity in the physical environment. Although this version of the model 
showed qualitative similarities to reconstructed population and settlement dynam-
ics, quantitatively it was very different in that it predicted much larger populations 
and individual settlements than seems likely from the archæological record. More 
recent versions of the model (Axtell et al., 2002; Gumerman et al., 2003) incorpo-
rating more spatial heterogeneity in the landscape and variation in individual agent’s 
characteristics provide a closer fi t to the available data. In a spatial sense, the model 
now mirrors the known (from the archæological record) location of settlements, 
and it also mirrors, with one crucial exception, the expansion and rapid collapse of 
the population, in the face of deteriorating environmental conditions, in particular 
drought and changes in the water table (fi gure 20.2). The crucial exception is that 
the ‘Artifi cial Anasazi’ model predicts continued occupancy of the valley after it is 
believed that Long House Valley was completely abandoned. Thus, the modelling 



Figure 20.2 Evaluation of the Artifi cial Anasazi model: (a) comparison of landscape 
occupancy in the Artifi cial Anasazi model and as reconstructed from the archæological 
record; (b) time-series comparisons of number of households as observed (blue) and 
predicted (red) by the models of Axtell et al. (2002) and Gumerman et al. (2003); and 
(c) predictions of number of households in Long Valley in an earlier form of the model 
Dean et al. (2000) with limited spatial and inter-agent heterogeneity (note different 
y-axis scaling); fi gure drafted by Nicky Perry, (after Kohler, 2005). Original artwork 
by Lucy Reading-Ikkanda for Scientifi c American Magazine and reproduced with 
permission.
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Figure 20.3 A classifi cation of methodological approaches to modelling in relation 
to the ‘goal’ of the modelling activity (after Guisan and Zimmerman, 2000); repro-
duced with kind permission of Elsevier Press.

exercise suggests that although the environment may well have been the key control 
on the socio-environmental dynamics of this system, outside factors, such as longer-
distance familial or other social ties, also infl uenced the Anasazi’s behaviour, and 
may explain the total abandonment of the landscape that the model fails to 
predict.

Putting it all together

The examples discussed above lead to a series of questions about model representa-
tion and evaluation. All of the case studies are concerned with the broad question of 
what drives LUCC in some landscape, but the various models vary markedly in how 
they conceptualise and represent the landscape and the processes driving change in 
it. This variety suggests that there is not a single ‘best’ modelling approach. Rather 
some approaches will be more or less useful than others depending on the task at 
hand. Whatever their purpose, all models must wrestle with the challenges of balanc-
ing detail with parsimoniousness and determining the appropriate spatio-temporal 
scales to consider. In a now famous paper, Levins (1966) suggested that all model 
builders are forced to trade-off generality, precision, and realism. He believed that, 
at best, a single model could only achieve two of those three criteria. Arguably, the 
different approaches to modelling listed in table 20.1 and described above each focus 
on a different one of Levin’s objectives (fi gure 20.3). While recognising that the 
boundaries are blurred, it might be said that analytical models focus on generality 
and precision, empirical models on precision and reality, and (mechanistic) simula-
tion models on generality and realism (Guisan and Zimmermann, 2000).

The case studies also highlight the different approaches taken to model analysis 
and evaluation. The analytical models described by Bockstael (1996) and Irwin and 



 MODELLING AND SIMULATION 351

Geoghegan (2001) and the empirical-statistical models of Millington et al. (2007) 
rely, largely, on confrontational approaches in that they compare ‘real’ world obser-
vations with model predictions. The tools used in this confrontation vary but include 
visual comparison of predicted and observed spatial patterns, comparative statistical 
measures (r2 and likelihood methods) and pixel-by-pixel comparisons (e.g., the 
kappa statistic, κ). Jenerette and Wu’s 2001 model of urbanisation in Phoenix was 
evaluated by comparison of the model’s predictions with various measures of spatial 
pattern in the landscape. As their model was stochastic they used Monte Carlo 
methods (i.e., where did ‘real’ world observations fall in relation to model esti-
mates?) and avoided pixel-by-pixel confrontation. The agent-based ‘Artifi cal 
Anasazi’ models are evaluated through both confrontation and experiment. The 
population dynamics produced by the models are visually compared to population 
changes inferred from archæological reconstructions, and are experimentally evalu-
ated by the researchers ‘tinkering’ (sensu Dowling, 1999) with the model until some 
adequate resemblance is reached (similar to pattern-oriented modelling).

The case studies also highlight the diffi culties in establishing an adequate 
typology of models and modelling, whether based on methodology or purpose. 
Methodologically, all of the models considered above blur the boundaries between 
analytical, empirical-statistical and simulation modelling. For example, based on 
the outcomes of the (empirical-statistical) models developed by Bockstael (1996) 
and Millington et al. (2007), maps of possible future change may be produced using 
stochastic simulation. A typology based on purpose is no clearer: all of the exam-
ples presented above contain elements of consolidative, integrative and exploratory 
modelling, and all in some way attempt to improve understanding and to make 
predictions.

Evaluating the Role of Models in Environmental Geography

A discussion of models and modelling in geography would be incomplete without 
some mention of the debates about their place in the discipline4. During geography’s 
(so-called) ‘quantitative revolution’, quantitative modelling was embraced as a 
methodology, peaking in the aftermath of Chorley and Haggett’s seminal Models 
in Geography (1967). While models and modelling remain key components in much 
geographic research (especially in physical geography), geographers continue to 
debate the appropriate place and use of modelling. Critics of modelling range in 
position from those who view it as being a worthwhile, but typically poorly done, 
enterprise, through to those who see it as having little or no place in geography 
(Flowerdew, 1989). In the following discussion, I will focus on the criticisms put 
forward by human geographers. This is not because physical geographers all agree 
about the use and role of modelling, but rather because their debate(s) tend to be 
rather narrower and methodological (e.g., concerning the appropriateness, or 
otherwise, of specifi c techniques and representational assumptions).

In essence, the debate over modelling in geography is an extension of the long-
running debate over the usefulness or otherwise of positivism and the scientifi c 
method in the discipline (Rhoads, 1999; Demeritt and Wainwright, 2005). Haines-
Young (1989) identifi es three common critiques of science and positivism in, but 
not limited to, geography. First, some human geographers complain that modelling, 
based on abstract quantitative theorising, cannot address the fundamental questions 
of human geography relating to uniqueness of place, individuality, imagination, 
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morals and æsthetics. Second, there is the realist perspective that truly understand-
ing some entity requires deeper understanding of its structure and the properties 
that change it and enable it to change. Realists such as Sayer (1992) have argued 
that the language of mathematics is unable to do this (recall the discussion above 
of empirical-statistical models as acausal and astructural). Finally, there is the post-
modern ‘attack’ that science and modelling do not hold privileged positions as 
guarantors of objectivity or truth compared with other approaches, and quantita-
tive modelling is just one of many means of geographic description (Cosgrove, 
1989). Science, and indeed knowledge, it is argued, are socially constructed 
and, as such, are products of the social milieu in which they are created and 
embedded.

Another, and related, criticism levelled at geographic modelling is that it fails to 
address the important questions of geography. For example, Harvey (1989) argues 
that geography is a historical discipline and that the language of mathematics and 
the positivist approach are ill-suited to the development of theory in this domain 
(see the realist perspective above). He argues that modelling is limited to repetitive 
events (cf. Oreskes, 2003, view that prediction is only possible for repetitive systems). 
Harvey questions what modelling can teach and has taught us about the important 
historical-geographical shifts that he believes should be the focus of human geogra-
phy; he states (p. 212) ‘those who have stuck with modelling  .  .  .  have largely been 
able to do, I suspect, by restricting the nature of the questions they ask’ and bemoans 
(p. 213) the ‘sad degeneration and routinisation of modelling into mere data crunch-
ing, numerical analysis and statistical inference instead of careful theory building’ 
(my italics). Here lies the crux of the debate: to what extent can models and model-
ling contribute to effective theory building in geography?

Conclusions

Modelling occupies a central place in geography and related disciplines, and it 
continues to receive considerable attention in the geographic literature. Although 
important questions remain about the ontology and epistemology of models and 
modelling, models are increasingly used in environmental geography to make pre-
dictions, to improve understanding, to synthesise and integrate data and to aid in 
communication. Recent developments in modelling are inextricably intertwined 
with developments in technology. As new analytical approaches have been devel-
oped, new sources of data become available, and computer power has increased 
and become more readily available, it has become possible to implement ever more 
detailed (‘realistic’?) models. However, detailed and more realistic ‘mimics’ are not 
a panacea for the long-standing challenges of identifying appropriate representation 
and scale. Detailed representation is beguiling, but ‘models of this sort may provide 
an unjustifi ed sense of verisimilitude’ (Levin et al., 1997, p. 335). While the prag-
matic realist might see ever more detailed models as ever-truer representations, the 
fact remains that the ‘truer’ a model, the harder it is to establish its ‘truth’ (Oreskes, 
2003). Likewise, while detailed models may be more empirically adequate, they may 
be premature and mask a lack of understanding of the entity being modelled (Frigg 
and Hartmann, 2006). Alongside the development of effective tools for model evalu-
ation, fi nding the appropriate level of representational detail remains the key chal-
lenge for modellers and modelling.
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NOTES

1. Of course, ‘complex’ also has an everyday meaning, which implies that an entity is not 
simple and comprises many parts; in essence it is ‘complicated’. This everyday use of 
complexity is commonly used in the modelling literature. For example, detailed models 
are often described as being ‘complex’.

2. In silico refers to entities or analyses that solely exist or are performed entirely within a 
computer.

3. By ‘land-cover’ I mean the nature of the land surface (e.g. forest, urban, etc.); this does 
not necessarily imply how the land is ‘used’, which is encompassed by the more anthro-
pocentric term, ‘land use’.

4. In this section, I will draw on contributions to Macmillan’s Rebuilding Geography as 
they provide a relatively accessible introduction to what is, at times, a somewhat dense 
and daunting body of literature.
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